Temporal and Spatial Characterization of Polymer Membrane Deformable Mirrors

Justin Mansell and Brian Henderson Active Optical Systems, LLC

Outline

- Introduction
- Spatial Response Characterization
- Temporal Frequency Response
- Conclusions & Future Work

AOS Products

Membrane Deformable Mirror Architecture

Why Polymer Membrane DMs?

- One of the barriers mass use of AO technology is cost.
- MEMS DMs are low-cost in high volume, but the requirement of a clean-room makes the NRE and initial costs very high.
- Polymer Membrane DMs are much less expensive and are very effective at laser beam shaping, and aberration compensataion.

Typical 1" DM Specifications

Parameter	Min	Typical	Max	Notes
Mechanical				
Number of Actuators	1	25		
Surface				
Aluminum Coating Reflectivity (Visible)	80%			High Reflectivity Possible
Surface Quality		λ/2		per inch - typically
	Can we quantify		gmatism	
HR Coating Damage Threshold		this better?		easured with a 11ns
(J/cm ²)	th			64 nm laser pulse
HR Coating Cost		74 000		r Lot of ~10
Actuation				
Focus Throw (um)		10		300 V, 25 mm diameter
Resonance Frequency (Hz)		500		25 mm diameter
				(Al-coated)
Focal Length (m)		3		25 mm diameter

Spatial Response of Polymer Membrane DMs

Membrane DM Influence Functions

 The membrane DMs architecture behaves the same independent of the architecture because the physics of the shape is the same including:

- MEMS
- Metal Membranes
- Polymer Membranes

 $\nabla^2 z = \frac{F}{T}$

Membrane DM Influence Functions

Normalized Influence Function Cross-Sections

Prior Analysis of Membrane DM Spatial Frequency Roll-Off

- We applied a varying spatial frequency waffle pattern to a membrane DM.
- The amplitude of the response fell off as $1/f_s^2$.

jmansell@aos_qllc.com

Modeling Procedure

- Scale IFs such that the sum of all IFs = 10 microns PV of focus.
- Sample ~90 points over central 80% of the DM diameter on a set of IFs from a membrane DM to create a poke and control matrix.
- Use matrix-based phase control to create a representation of a set of Zernikes.

 $commands = \Gamma \cdot \phi_{Zernike}$

Zernikes Grouped Into Radial Order

Tested Actuator Patterns

Zernike Fitting Results for a 61-Actautor Square Grid DM

Summary for All Actuator Patterns

Summary for Various Actuator Patterns

Analysis of Zernike Fitting Results

Spatial Frequency Response Conclusions

- Most actuator patterns were able to recreate the low-order Zernike patterns well.
- The amplitude of the Zernike fits fell off with higher orders.
 - Fall-off in amplitude was proportional to the (Zernike radial order) $^{-5/3}$.
- Future Work:
 - Examine maximum number of actuators that are useful for compensation or generation of Kolmogorov turbulence

Temporal Frequency Response of Polymer Membrane DMs

Prior measurements showed a 550 Hz resonance.

Back of Membrane

 Our prior work on frequency response done with a solid silicon electrode pattern showed a ~550 Hz resonance.

Long Exposure Closed Loop Strehl Ratio

D. Dayton et al., "Characterization Of A Novel Electro-Static Membrane Mirror Using off-the-Shelf Pellicle Membranes", Conference on Adaptive Optics for Industry and Medicine 2007 (Galway, Ireland).

We measured a 10 ms rise and fall time on a membrane DM.

- During the 2007 work on making a metric AO system we found that we needed a settling-time delay.
- After this work we measured a 10%-90% rise time of ~10 ms.

10 ms

21

Measurement Setup

- We illuminated a DM with a collimated HeNe laser and sent the light onto a photodiode.
- The modulated spatial phase caused an intensity variation in the photodiode.

Intensity Transport Equation Approximation

PD

$$\nabla \phi \propto I(+\Delta z) - I(-\Delta z)$$

Electronics Setup

- Drive Electronics: Used a National Instruments (NI) 6221 driving an Apex op-amp non-inverting amplifier
- Photo-Diode: Signal from the silicon photodiode was digitized by the 6221.
- Software: Wrote custom C# application to scan drive frequency and measure results.

Measurement Results

http://hyperphysics.phy-astr.gsu.edu/Hbase/music/cirmem.html

Long Term Drift in Focal Bias

- We placed a DM under 50% displacement bias and measured the change in the focal length over time.
- The focal power varied a small amount over time consistent with an air conditioning variation.

Observed Environmental Effects

Air Damping

 We found that there was a slow ~f^{-0.25} roll-off in frequency response before the resonance that we are attributing to air damping

Humidity

 We have observed a reduction in tension in high humidity. This is a known issue with nitrocellulose.

Temperature

 We found a slow low-amplitude variation in the bias state of the DM over hours that correlates well with air conditioning.

Temporal Frequency Response Conclusions

- With the new high-tension membrane DMs we see a higher resonance frequency and a reduced effect of the air damping.
- Future Work:
 - Fix humidity and air damping issues by investigating different membrane material, sealing the membrane in metal coatings, and investigating low-pressure operation

Conclusions

- Spatially, we find that the polymer membrane DM performs like other membrane DMs.
 - (Zernike Order)^{-5/3}
- Our polymer membrane DMs have shown enhanced temporal frequency response capability by increasing the membrane tension.
 - Resonance > 500 Hz
- We are working to mitigate humidity and air damping effects.

Select Future Work

- Integrated Drive Electronics,
 Metric AO & DM
- Inexpensive High-Speed Wavefront/Metric Camera Sensors
- 3-Layer Architecture
 Membrane DMs
 - Higher-Power
 - Faster
 - Larger Actuator Count

Intensity Shaping Demonstration

Questions?

Happy DM Interferogram

Justin Mansell

Justin.Mansell@aos-llc.com

(505) 245-9970 x122

