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ABSTRACT 

 
Metric adaptive optics systems search over a set of wavefront modes or commands to actuators to  
optimize a system performance metric like Strehl ratio or brightness.  These systems have been explored 
for many decades and have been thought to be unreliable due to local minima in the metric space.  It has 
been shown that some modes match well with no local minima to a given metric, but they rely on the 
ability of a mirror to create reliable replicas of the search modes.  We present here a study of the most 
common implementation of metric adaptive optics that involves searching over the actuator command 
space while evaluating an intensity-based metric.  We map an error space relating a common metric to 
actuator commands and statistically analyze the error function to determine the quantity and location of the 
local minima.    
 
Keywords: Metric Adaptive Optics, Local Minima, Actuator Basis Set, Searching, Dithering, Target-in-the-

Loop Adaptive Optics. 

1. INTRODUCTION 
In metric adaptive optics (MAO) aberrations on a beam of light are compensated by optimizing a metric of 
beam quality while searching through the commands sent to a deformable mirror.  This technique is also 
known as Target-in-the-Loop Adaptive Optics or Stochastic Adaptive Optics.  The most commonly used 
metric is the amount of light propagating to a focus through a pinhole onto a photodiode.  Other metrics 
that have been considered include the amount of focused light propagating through a complicated intensity 
mask or the rms wavefront slopes measured on a wavefront sensor.     
 
In contrast, conventional adaptive optics (CAO) compensates aberrations on a beam of light by measuring 
the wavefront distortion on a wavefront sensor and then using a control matrix and an integrating control 
loop to command deformable mirror.  There are several challenges to using conventional adaptive optics.  
CAO requires a wavefront sensor, which is often expensive.  To measure the wavefront using a Shack-
Hartmann wavefront sensor, a curvature sensor, or phase diversity sensor, the beam of light needs to be 
spread-out over many pixels.  Many applications of adaptive optics site photon flux as the fundamental 
limit of the bandwidth of the system.  Finally, there is often a significant delay between the measurement 
on the wavefront sensor and the commands being sent to the deformable mirror due to the significant 
amount of processing required to convert the image into a phase measurement and then to convert the phase 
measurement into deformable mirror commands.    
 
Metric adaptive optics offers solutions to many of these problems.  The expensive complex wavefront 
sensor can be replaced with a low-cost high-speed photodiode.  The complex computations can be replaced 
with a simple searching algorithm that can be implemented on a very low-cost microcontroller.1   
 
There have been many different algorithms that have successfully demonstrated the optimization including 
stochastic parallel gradient descent (SPGD) and guided evolutionary simulated annealing (GESA).2,3  These 
approaches usually search over the DM actuator commands to optimize the metric.  Unfortunately, the error 
spaces generated by mapping the actuator commands to most of these metrics is well known to have local 
minima.  A more deterministic approach involving searching through coefficients of Zernike-type 
polynomials was recently introduced to try to eliminate the local minima in this search space.4  This 
algorithm relies on the ability to form the error space into a smooth local-minima free shape by warping the 
deformable mirror into these polynomial shapes.  If the mirror cannot exactly match the polynomial shapes 
or there is noise on the detector, the error space is not guaranteed to be free of local-minima.  Although 
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local minima are known to exist in the search space for MAO systems, they have not been well studied.  
We present here a study of one error space of a common implementation of metric adaptive optics.  This 
study cannot address the limitations of all the possible variations of MAO systems, but will outline an 
analysis procedure that can be used for future studies of MAO search spaces.  We begin with a description 
of how we setup the study and performed the analysis.  Then we present results of statistical studies of two 
different error spaces.   

2. ERROR SPACE GENERATION PROCEDURE 
For this study, we chose to look at the ability for a 7 actuator deformable mirror to compensate an 
aberration generated as a sum of 10 Zernike polynomial terms using the integral form of Strehl ratio as the 
merit function.   
The metric we used for this modeling was the integral form of the Strehl ratio (SR) given by, 
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where E(x,y) is the field.  A uniform intensity profile was used over the Zernike circle.  This term was 
evaluated on a 32 by 32 grid with a grid spacing of 0.5625 mm.   
 
The deformable mirror actuators were positioned in a hexagonal grid with a 4.5 mm spacing.  The actuator 
influence functions were modeled as Gaussians with a 1/e2 radius of 6.1 mm.  Figure 1 shows a cross-
section of the influence function and a false-color plot of each of the influence functions on the grid used to 
for the merit function evaluation. 

 
The aberration was generated as a sum of the lowest-order 10 Zernike polynomial terms beyond piston 
using the Noll numbering.  The common names of these Zernike terms are x tilt, y tilt, 90-degree 
astigmatism, focus, 45-degree astigmatism, x trefoil, x coma, y coma, y trefoil, and x quadrifoil.  The 
Zernike coefficients were randomly generated using a Gaussian distribution with a sigma of π radians.  The 
Zernike radius was set to 6.25 mm.  Figure 3 shows false-color images of the three aberrations on the grid 
that was used to evaluate the merit function.  Figure 2 shows the coefficients used in this modeling for the 
different aberrations that were evaluated.   
 
  

   
(a)                (b) 

Figure 1 - (a) is the cross-section of an individual influence function.  (b) is the 2D false-color plot of each of 
the seven hexagonal-grid influence functions 
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Once the aberration and the DM model were established, the error space around each of these aberrations 
was determined.  We used a simple iterative axial searching algorithm to find the optimum position of the 
actuators to maximize the Strehl ratio.  Then we evaluated the merit function at a regularly spaced 10 points 
between –π and π around the optimum actuator positions for each actuator.  Generation of the error space 
for a single aberration case involved the generation of 107 data points, which took about 4 days on a 
computer with a 2.4 GHz Intel Duo T7700 processor and 2 gigabytes of RAM.  We limited ourselves to a 
noise-free error space for this study. 

3. ERROR SPACE ANALYSIS  
In this study, we studied the error space defined by the mapping of actuator positions to a Strehl ratio 
metric, which we generally want to maximize to get the best beam quality from a system.  Therefore, we 
actually want to avoid local maxima, not local minima, but since the literature on this topic typically is 
trying to minimize an error, we will use the term local minima for consistency.  In an operating system 
leveraging an existing search algorithm, we would probably negate the Strehl ratio to determine the error 

 
Figure 3 - False-color images of the three different aberrations evaluated. 

 
Figure 2 - Magnitude of the coefficients of the Zernike polynomial sum used to generate the aberration. 
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space, and would therefore create local minima instead of local maxima.  After generating the error space 
we performed different types of analysis on the data to find the frequency, depth, order (number of local 
minima dimensions), and location of the local minima in this error space.   

3.1. Frequency and Order of Local Minima 
In a multi-dimensional error space it is possible for a point to be a minima in any number of dimensions.  
The first analysis we performed was to determine the frequency of the minima and in how many axes they 
were minima, which is referred to as the minima order or rank for this study.  The global minimum is the 
point with the lowest error that is a minimum in all the axes.  For this study, a point was considered a 
minima in an axis if the adjacent points in the error space along that axis were larger than it.  Recall that the 
merit function was evaluated at 10 points between –π and π around the optimum for each axis.  Thus, each 
of the 7 axes has an edge at –π and π, where it is not possible to evaluate the error function on both sides. 
Hence, it is not possible to determine if a point containing an edge is a local minima. Therfore, the analysis 
was done by ignoring the edges and looking at only the inner points of the error space, of which there were 
87 or 2,097,152.   
 
The error space was analyzed to find if each point was local minima, and if so, in how many axes.  The 
number of axes is referred to as the minima order.  Figure 4 shows the percent of the inner points that were 
local minima in each of the minima orders.  For clarity, points that were local minima in one axis were not 
counted again as local minima in two or more axes.   

 
We can learn quite a bit about the error space by analyzing this result.  First, all the error spaces we 
analyzed were very similar statistically.  In fact, the standard deviation of the percentages in any of the 
orders was always less than 1%.  Although the majority of points were local minima in at least one axis, 
only 0.01% were fully-dimensional local minima.  These are the local minima that are most difficult for 
simple searching algorithms. 

3.2. Depth of Local Minima 
Many searching algorithms have some degree of randomness built in to help them to hop out of local 
minima.  We sought to determine the depth of the local minima to help determine how much randomness is 
necessary to avoid becoming trapped in a local minima.  For this evaluation, we looked at all the local 
minima and determined the average depth by averaging the difference in metric value (Strehl ratio) 
between the local minima and all its neighbors in all the axes that were minima.  We only looked at points 
on our grid of 10 points in each axis.  Figure 5 shows the data plotted as a histogram to show how many of 
the minima were at what depth.   

 
Figure 4 - Frequency of local minima with respect to the dimensionality of the minima for the three 
aberrations evaluated and their average. 
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From the data in Figure 5, we can see that in all the cases evaluated, the local minima have a very small 
depth and that most of the local minima are near the larger depths.  The shape of the curves is clearly 
bimodal, but that is probably of less interest to general problems since it will probably be traced back to the 
specific model of the DM coupled with the specific merit function chosen.  In all of our cases, the depth of 
the local minima were less than 0.01.  Since these minima are at such a shallow depth, it is likely that 
measurement noise will enable the system to hop out of the local minima and sophisticated algorithms may 
not be necessary.   

3.3. Location of Local Minima 
So far we have found that there are very few fully-dimensional local minima and that they are quite 
shallow, but we have not looked at where these local minima are.  To address that point, we looked at a 
histogram of the metric value (Strehl ratio) at each of the fully-dimensional local minima.  Figure 6 shows 
this histogram of the value of all the fully-dimensional local minima for all of the error spaces we 
generated.   
 
  

 
Figure 5 - Histogram of the depth of the local minima 
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For comparison, Figure 7 shows the histogram of the all the data points we generated in the entire error 
space.   
 

 
Table 1shows some of the statistics of the fully dimensional minima. 
  

 
Figure 6 - Histograms of the fully-dimensional minima for each of the three aberrations 
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Figure 7 - Histogram of all the points in the metric error space 
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This result was one of the most interesting of the study.  In each of the three cases, the majority of the fully-
dimensional local minima were very near the optimum value.  In fact, the standard deviation of the fully-
dimensional local minima was less than 1% in every case we examined.  The range of values for the fully-
dimensional local minima was less than 7% in every case as well.  Thus, even if a searching algorithm were 
to get stuck in one of these local minima, we would be very near the optimum anyway.   

3.4. Shape of the Error Space 
Although visualizing these error spaces in more than a few dimensions is extremely difficult, we did want 
to show a limited dimensional visualization of the error space to give a flavor of the character of the space.  
Figure 8 shows a surface section of the error space near a fully-dimensional local minima.  This plot shows 
that the error space is actually quite smooth.  It also shows a common way that local minima occur.  The 
local minima in this plot, which is indicated by the black asterisk, is actually on an angled ridge of minima.  

Examining the adjacent points show that it is indeed a local minima, but also shows that a point along the 
diagonal has a lower error, where error is the negative of the Strehl ratio.  This type of local minima would 
fool many of the simple axial search algorithms, but would be easily avoided by more sophisticated 
algorithms.  
 

Table 1- Statistics of Fully Dimensional Local Minima 

 

Aberration 1 2  3  

Minimum 0.6626 0.4804 0.7778 

Maximum (Optimum) 0.7002 0.5232 0.8424 

Average 0.6885 0.5035 0.8263 

StDev 0.0059 0.0094 0.0102 

Count 250 240 244 
 

 
Figure 8 - Image of a section of the error space around a local minima.  The local minima is indicated by the 
black asterisk.  The values of the merit function around this local minima are shown in the table around the 
left. 



4. CONCLUSIONS 
Over the past several years we have seen some amazing results from metric adaptive optics systems.  This 
study begins an analysis of the error space associated with typical metric AO systems and shows why local 
minima are not much of a problem for these AO systems.  This study is just a single look at a few metric 
adaptive optics error spaces, but it is a common enough problem definition to be widely applicable.  Future 
work on this topic may include a study of how different searching algorithms respond to traversing the 
error space and how the presence of these local minima affected their performance.   
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